
European Journal of Operational Research 253 (2016) 543–556

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Invited Review

Origin and early evolution of corner polyhedra

Ralph Gomory

∗

New York University, Stern School of Business, United States

a r t i c l e i n f o

Article history:

Received 27 March 2015

Accepted 1 March 2016

Available online 8 March 2016

Keywords:

Integer programming

Cutting

Linear programming

Corner polyhedra

a b s t r a c t

Corner Polyhedra are a natural intermediate step between linear programming and integer programming.

This paper first describes how the concept of Corner Polyhedra arose unexpectedly from a practical op-

erations research problem, and then describes how it evolved to shed light on fundamental aspects of

integer programming and to provide a great variety of cutting planes for integer programming.

© 2016 Published by Elsevier B.V.

1

1

n

l

w

r

o

o

c

t

d

P

l

h

i

m

a

J

m

f

w

e

c

p

1

p

p

t

A

v

b

t

l

w

T

c

a

s

h

0

. Introduction and background

.1. Intent of this article

This article is a personal account of my experiences with Cor-

er Polyhedra and some closely related integer programming prob-

ems. It will not be a survey of the related literature, a survey

hich, because of my intermittent connection with the subject, I

eally could not write in an informed and balanced way. 1

The article starts by describing work on the practical problems

f paper mills. The necessity of dealing with the very large size

f these problems motivated the invention of what is now called

olumn generation. Then the results obtained using these methods

urned out to have a completely unexpected periodicity.

Explaining that periodicity led through various stages of un-

erstanding to the creation of the polyhedra that I named Corner

olyhedra. We will see how the Corner Polyhedra then took on a

ife of their own, giving insight into the structure of integer poly-

edra and generating new families of cutting planes for general

nteger programming.

Throughout I will do my best to describe the surroundings and

otivation that drove this evolution and to make the various steps

s clear as possible and illustrate them by examples. I will also oc-
∗ Tel.: + 1 9142388522.

E-mail address: gomory@sloan.org
1 This paper is based on my lecture “Forty Years of Corner Polyhedra” given on

uly 11, 2012 at EURO XXV. I want to thank the many researchers who have sent

e their papers over the years, including the many years that I have spent away

rom integer programming, being engaged in other work. Trying to mention their

ork and place it in the proper context would be a very large and very worthwhile

nterprise, but I do not attempt it in this paper.

c

s

a

h

a

t

r

p

ttp://dx.doi.org/10.1016/j.ejor.2016.03.001

377-2217/© 2016 Published by Elsevier B.V.
asionally point to directions which seem to me to have unrealized

ossibilities.

.2. Background: applied mathematics and operations research

In the 1950’s Operations Research was a new and exciting

art of Applied Mathematics. It was appealing to me because it

romised to extend the reach of Mathematics beyond the tradi-

ional fields of Science and Engineering and closer to ordinary life.

nd that did happen.

But in addition, many times, Operations Research work moti-

ated by practical needs, has also turned out to be mathematically

eautiful.

Many believe that Applied Mathematics, and especially Opera-

ions Research, is mainly a routine use of mathematics. Many be-

ieve that operations researchers find a problem, apply to it some

ell understood piece of mathematics, and the answer comes out.

hat ends it, the problem is solved.

This certainly can happen, but often applied work is much more

omplicated than that. In applied work finding a way to formulate

 problem mathematically can be difficult in itself. Then if you do

ucceed in finding a mathematical formulation, its sheer size and

omplexity may overwhelm standard approaches. You may have to

plit out tractable parts and leave the rest, or you may have to find

 way to approximate, or you may have to invent.

Sometimes you may succeed in all this only to find that your

ard won solution is met with hostility by those who might be

ffected by it, or alternatively, you may be fortunate and find that

hose affected by your work are surprisingly eager to adopt it for

easons quite unconnected with what you have done.

And, every now and then, you may turn up something unex-

ected, something you stumble across while pursuing something

http://dx.doi.org/10.1016/j.ejor.2016.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.03.001&domain=pdf
mailto:gomory@sloan.org
http://dx.doi.org/10.1016/j.ejor.2016.03.001

544 R. Gomory / European Journal of Operational Research 253 (2016) 543–556

t

u

t

h

t

p

t

l

l

i

a

d

t

w

t

M

t

l

t

a

r

t

i

l

t

j

r

2

i

i

o

l

f

o

i

w

d

s

t

t

i

i

else. When I think of this sort of thing I always think of Christo-

pher Columbus.

Although Columbus lived in a world very different from ours,

he had some problems that resemble those we have today. In mod-

ern terms we would say that Columbus had major difficulties get-

ting his project funded, and then, after his plan to reach China and

India by sailing west was finally accepted, he failed to get there.

Columbus promised to find a new route to the Indies. But

Columbus didn’t find a new route to the Indies. Instead he dis-

covered a whole new world. This too can happen.

1.3. Some modern explorers

About 370 years after the Queen of Spain sent Columbus off

toward the Indies, a modern ruler, IBM, sent off another smaller

group of explorers. Our group of explorers was chartered to see if

the mathematical methods of Operations Research could find and

conquer rich new territories for computers.

Among our explorers were Benoit Mandelbrot, Paul Gilmore,

and T.C. Hu. Later we were joined by Philip Wolfe and Ellis

Johnson.

Columbus’ expedition embarked in three ships, the Nina, the

Pinta, and the Santa Maria. Our smaller expedition also relied on

three ships. Ours were named Linear, Dynamic, and Integer Pro-

gramming. As it turned out, we needed all three for our voyage.

2. Origins of column generation

2.1. The stock cutting problem

Our little group within IBM’s Research Division, was aware of

the general stock cutting problem. This is the problem of start-

ing with a stock of large pieces of some material and then cutting

those large pieces into needed quantities of smaller sizes while

creating as little waste as possible. We understood that a great va-

riety of stock cutting problems could be formulated as linear or in-

teger programming problems; so we wondered if there was some-

thing in this area that we could put into actual use.

As a first step we tried a problem we had heard about that in-

volved cutting up big steel girders for bridges; but although we

could formulate the problem mathematically, the data from real

bridges gave us integer programming problems that were way be-

yond the scale that anyone at that time could handle.

2.2. The paper trim problem – linear programming

Next Paul Gilmore and I took a look at a different stock cut-

ting problem, the paper trim problem, the problem of cutting the

very wide rolls of paper that paper mills produce into the smaller

width rolls that people actually use. We had heard that there were

special aspects of the paper trim problem that might allow us to

use ordinary linear programming instead of integer programming;

if true, that would make the problem more tractable.

In the paper trim problem, as in the bridge problem, the ac-

tual numbers matter. So here is a description, based on our later

experience, of a typical paper trim problem. 2

Paper comes streaming out of an enormous paper machine in a

paper mill and is rolled up on metal spindles. The paper the ma-

chine makes has a fixed large width W, which depends on the pa-

per machine. A typical width W is 200 inches or more. The mill’s

customers want rolls of paper in a variety of much smaller sizes,

thirty different customer widths w j of 20 to 80 inches would be
2 Gilmore and Gomory (1963) has a detailed description of an actual problem as

an appendix.

2

a
ypical. So the mills are obliged to cut up the wide rolls they man-

facture into the quantities b j of these smaller rolls that the cus-

omers want.

To produce the right quantities of the smaller rolls, the mills

ave to cut up their wide rolls in many different ways. Each way

o cut up one wide roll is called a cutting pattern. The i th cutting

attern is a list A i that gives the number a i, j of rolls of a width w j

hat the pattern produces.

It was well known that the paper trim problem could be formu-

ated as an integer programming problem. In this standard formu-

ation x i is the (integer) number of times the i th cutting pattern

s used, n is the number of different cutting patterns A i that are

vailable (this is often a very large number), m is the number of

ifferent customer widths w j that are demanded, and the goal is

o choose integers x i (i = 1,…, n) that fill the m customer orders b j
hile minimizing the cost.

Cost is taken to be the number of wide rolls required to fill all

he orders. So here is a standard formulation:

inimize V =

i = n ∑

i =1

x i subject to (1)

i = n ∑

i =1

a i, j x i ≥ b j for j = 1 , . . . , m (1A)

If we choose, we can add non-negative slack variables to (1A)

o produce a formulation free of inequalities.

Now (1) and (1A) together are a very straightforward integer

inear programming problem. The only question is: is it too large

o handle?

What we had heard about the paper industry was that it was

cceptable for the customer requirements, the b j not to be exact

equirements. It was acceptable to produce more than the amounts

he customer asked for by a few percent, the customers were will-

ng to take the extra rolls.

What that meant to us was this: if the linear programming so-

ution to (1) and (1A) gave us some non-integer x j , cutting patterns

hat were used a non-integer number of times, perhaps we could

ust round up those x j and the customer would accept the extra

olls that were generated.

That sounded promising.

.3. Size still a problem

However, even though it was now possible that we were deal-

ng with an ordinary linear programming problem, our mathemat-

cal formulation still presented a difficulty: the enormous number

f possible cutting patterns. With realistic paper industry prob-

ems, with for example 30 different customer widths to choose

rom, the number of cutting patterns, and therefore the number

f columns in the linear programming problem, could easily run

nto many millions.

Now solving a linear program with millions of columns was

ell beyond what even the largest computers of that time could

o, while the paper mills at that time were yet to purchase even a

mall computer.

So we had to think hard about how to get the problem down

o something that could run on a small computer, and then hope

hat the cost savings our calculation might produce would cover

ts cost.

We thought hard about what the simplex method actually does

n (1) and (1A) and eventually found an approach.

.4. A starting solution

Suppose we start the simplex calculation of (1) and (1A) using

n arbitrarily chosen set of cutting patterns A that we take as an
i

R. Gomory / European Journal of Operational Research 253 (2016) 543–556 545

i

c

d

m

b

t

e

o

p

s

f

u

m

T

t

e

a

2

i

p

r

o

o

t

p

t

p

a

v

c

s

t

b

t

p

p

c

w

2

w

t

s

p

c

a

T

o

t

g

O

w

c

w

w

i

2

o

2

p

d

a

t

c

a

n

t

p

t

T

t

a

3

3

t

i

t

m

e

y

r

b

m

h

p

s

m

t

t

w

l

a

f

a

s

o

l

a

o

p

nitial basis. To form a first basic feasible solution we need only m

utting patterns if there are m different customer widths. In ad-

ition to this initial set we added to our starting problem a few

ore arbitrarily chosen cutting patterns which might turn out to

e useful for improving from our initial basis.

Note that In our linear programming formulation (1) and (1A)

he column for each cutting pattern A i has in addition to the m

lements a i,j that describe the rolls it produces, an entry −1 in the

bjective function row (1) that reflects the wide roll it is using up.

Let M be the matrix that contains a column for each cutting

attern in the basis, all of them with −1’s in the row that repre-

ents the objective function. M also has an additional first column

or the V that represents the objective function. This is a unit col-

mn, with 1 at the top row and then zeroes. M is a (m + 1) x (m + 1)

atrix.

The simplex method starts by finding the inverse M

−1 of M.

hen, using M

−1 and following the simplex method, we transform

he entire starting matrix into a first basic feasible solution. The

xtra cutting patterns that we are carrying along are now columns

ssociated with non-basic variables.

.5. Improving the starting solution

If we look at the top row of the entire transformed matrix, this

s the new cost row. The top entry in every transformed cutting

attern column is the result of taking the dot product of the top

ow of M

−1 with the cutting pattern column (-1, A i).). The top row

f M

−1 has a 1 in the column representing V, and then a string P

f m non-negative numbers (p 1 , p 2 ,…, p m

); so the dot product with

he column containing A i is (1, P) · (−1, A i) = (−1, P · A i) = (−1,

 1 a i 1 , p 2 a i ,2 ,…, p m

a i,m

)

The p i are the shadow prices that reward the cutting pattern for

he customer widths a i,j it produces, while the −1 in the V column

enalizes it for using up the wide rolls that the mill produces.

The simplex method tells us that if the cost row entry of

 non-basic cutting pattern column is positive, that is if the

alue of what it produces outweighs its cost, then using that

olumn to move to a new simplex basis will give an improved

olution.

So the problem of finding an improved solution has become

his: can we find a new cutting pattern A i such that its contri-

ution outweighs its cost? Since the non-basic columns were arbi-

rarily chosen, and could be any of the millions of possible cutting

atterns, we are asking this: is there, among all possible cutting

atterns A i , an A i that will make a positive contribution given the

urrent values (p 1 , p 2 ,…, p m

) of the shadow prices. Is there an A i

ith P · A i > 1?

.6. The knapsack problem

While any improving cutting pattern would be welcome, we

ould have an especially warm welcome for the cutting pattern

hat makes the biggest positive contribution. So let us shift gears

lightly and look for that. So we are now looking for the cutting

attern A i that maximizes P · A i .

Although the words we are using are different, we now have a

lassical knapsack problem. In the knapsack problem we have an

ssortment of objects with different values and different weights.

he knapsack problem is to find the most valuable assortment of

bjects to put into the knapsack without exceeding a specified to-

al weight.

Our problem here is to find the most valuable cutting pattern

iven the current prices p j for each customer width w j produced.

ur constraint here is not a specified total weight, it is a total

idth. To qualify as a cutting pattern, the collection of widths in a
utting pattern must add up to a total width not exceeding W , the

idth of the roll the paper machine produces.

So, in looking for the cutting pattern A i that maximizes P · A i ,

e have, in different words, a knapsack problem.

This is good news because there are many simple ways, includ-

ng standard Dynamic Programming, to solve knapsack problems.

.7. An algorithm

All this enabled an algorithm that no longer required millions

f columns.

After obtaining the initial basis as described in Sections 2.4 and

.5 , we take as the value for each customer width w j the shadow

rice p j , and solve our constrained width knapsack problem using

ynamic programming. Then we take the winning cutting pattern

s a new column for entry into the next basic feasible solution of

he simplex method.

We can repeat this process over and over, generating new

olumns, going to new and improved feasible bases, until we have

 basis with the property that the best new cutting pattern does

ot make a positive contribution. That means that there are no cut-

ing patterns that will improve our current basis. We have the best

ossible basis, the best possible collection of cutting patterns.

We had found a way to deal with the millions of cutting pat-

erns. We now had all the elements for an algorithm.

Carol Shanesy, our wonderful programmer, soon gave us a FOR-

RAN program that combined this method of generating new cut-

ing patterns with the steps of the simplex method. We had an

lgorithm that actually ran.

. Practical progress

.1. From algorithms to paper mills

At this point we felt we had done what we could do from a dis-

ance; we had an approach to the integer requirement by round-

ng, and an approach to the problem of the millions of patterns

hrough column generation. It was time to see some real paper

ills and see what could actually be accomplished. Did our math-

matical model fit what was really going on? Would the rounding

ield acceptable results? Or were there other conditions that were

eal and important that we did not include in our formulation.

Even if our formulation did match the actual situation, or could

e changed to match it, would our methods save enough paper to

ake the use of our methods worthwhile? After all, the mill would

ave to buy a computer.

Clearly the next step was to find a way into the land of real

aper mills. Fortunately we had guides.

Our guides were always IBM salesmen, people accustomed to

elling IBM equipment to paper mills. Since at that time paper

ills did not have computers, our guides usually sold the mills

hings like time clocks or accounting machines. The salesmen liked

he idea of having something new to sell, so they were willing to

ork with us.

So Paul Gilmore and I set out. We hoped, as a minimum, to

earn more about the problem by visiting actual paper mills. We

lso hoped, if our approach still seemed reasonable when con-

ronted by the realities of actual mills, to find a mill that would

ctually try out our ideas.

Paper mills were then, and probably still are now, very impres-

ive places. At a paper mill big hunks of wood are thrown in at

ne end of a paper making machine, which can easily be 400 feet

ong, and a wide stream of paper comes out at fifty miles an hour

t the other end. As it emerges, this stream of paper is rolled up

n a succession of big metal spindles and is ready for the cutting

rocess.

546 R. Gomory / European Journal of Operational Research 253 (2016) 543–556

V
A
LU

E

WIDTH

Fig. 1. Periodicity.

4

4

a

l

o

t

s

i

g

a

c

W

w

a

c

a

p

o

r

o

w

u

t

e

a

v

W

o

l

i

t

t

3 An example of that relation for a real problem appears as an appendix in

(Gilmore & Gomory, 1963).
We soon learned that at the mills there were some very spe-

cial people who cut up the wide rolls. They decided how to cut by

an intuitive feel developed by experience, lots of experience. There

were some people who did this job well, and there were others

who did not; it was a skill not everyone could develop. Some mill

managers were worried; many workers who did a good job of cut-

ting were getting older, it was not clear they could easily be re-

placed when they retired.

Partly because of this concern there were a few mills that

were willing to try what was for them a fairly painless experi-

ment. They gave us their customer orders for a month or so and

asked us to come back with our calculated results. They could

then see how our results compared with what they had actually

done.

3.2. Computing and early results

We took their data back to our home base at IBM Research and

started running calculations. After a few false starts our programs

ran on their data, and what came out looked good to us. When we

had enough results we sent them back to our IBM salesmen who

then took them over to the mills.

At the mills there was agreement that rounding was not a prob-

lem and that our solutions did reduce waste. Usually our solutions

saved only a few percent, but sometimes more. But even a few per-

cent of the output of a paper mill is a lot of paper. Though savings

varied quite a bit from one mill to another there was often enough

saved to make it economically attractive for the mill, provided the

computation could be done at the mill and on a small computer.

So this was starting to be serious.

3.3. Reducing running time and other progress

The hard problem was running time.

We knew that to succeed we needed to cut down running

times. The mills needed to get the results that we were getting on

our big computer at IBM Research on a small computer that was

affordable to the mills, and the results had to come out reasonably

quickly.

We worked to reduce running time and looked at lots of ex-

amples. We learned by trial and error. We learned to avoid cutting

patterns that included both rolls for which there was high demand

and rolls for which there was low demand. We learned when it

was time to cut off the calculation and to stop, even though the

result was still improving slowly etc.

In our calculations we found that we were spending much more

time solving the knapsack problems that found a new cutting pat-

tern, than on the next linear programming step that used that new

cutting pattern, so Paul and I worked hard at ways to improve the

knapsack calculation itself.

In the end what we did worked. We got the running time down

to the point where paper mills started to buy computers for the

first time. Paul Gilmore and I were even named “IBM Science Sales-

men of the Month”, for May 1961 or possibly May 1962. Being IBM

science salesman of the month is not quite the same as winning

the Nobel Prize, but we felt good about it nevertheless.

Eventually our methods and improvements on them became

very widely used in paper mills.

We also extended our methods to classes of two dimensional

problems (glass is an example) and wrote an article describing

fast methods for the knapsack problem papers (Gilmore & Gomory,

1961, 1963; 1965). The idea of column generation became quite

widespread. And for our paper that described many of these things

Paul Gilmore and I were awarded the Lanchester prize of the Op-

erations Research Society in 1963.
. Encountering the unexpected: periodicity appears

.1. Data and periodicity

However while we were visiting paper mills and glass plants

nd improving and extending our methods, we were also collecting

ots of data. One of the things we collected data on was the effect

n waste of the width of the paper machine 3 . We also looked at

he knapsack problems separately from the rest of our algorithm to

ee how much individual cutting patterns improved with increas-

ng W .

Here we show in somewhat idealized form a typical knapsack

raph (Fig. 1).

The values (shadow prices) and widths of the individual rolls

re fixed. The graph shows the total value of the small rolls that

an be cut from one wide roll as a function of machine width W.

e can see that the total value of the knapsack increases steadily

ith increasing width, as it should, but in addition, we see that,

fter an initial period of irregular increases in total value, the in-

reasing total value becomes periodic.

We had not expected this at all; but there it was in the data.

What exactly did we have there? Once we started looking, an

nswer was not hard to find.

We soon realized that the period that we saw in the periodic

art of the graph was always exactly the same as the width of one

r the other of the small rolls that we were cutting from the wide

oll. In fact we found that the small roll that determined the peri-

dicity was always the roll w j that had the most value per unit of

idth, the roll that was the most rewarding for the space it used

p.

It is plausible that if the size W of the knapsack is big enough,

he optimizing solution is likely to have some of these value dens-

st rolls in it. If it does, it is likely that the optimizing solution for

 knapsack problem of size W + w i , obtained by adding one more

alue dense roll to the optimizing solution for the knapsack of size

, has a good chance to be the optimal solution. If this actually

ccurred for all sufficiently large knapsacks, this behavior would

ead to periodicity.

Paul Gilmore and I gave a rigorous explanation along these lines

n our paper on the Theory and Computation of Knapsack Func-

ions (Gilmore & Gomory, 1966).

However I had a feeling that there was something more there

o be discovered.

R. Gomory / European Journal of Operational Research 253 (2016) 543–556 547

4

p

t

r

t

p

t

m

t

p

e

l

a

u

t

n

w

v

t

w

t

c

p

a

f

m

5

5

g

g

p

a

e

w

e

t

x

t

x

t

m

i

h

r

t

b

t

p

n

a

T

p

n

c

n

t

l

5

w

c

∑

o

∑

o

t

p

R

m

V

5

t

(

g

i

m

i

∑

t
.2. Examining the knapsack: leaving paper trim behind

Now we are going to shift gears and focus on the knapsack

roblem. The knapsack problem, which is the one-dimensional in-

eger programming problem, appeared in Section 2.6 because of its

ole in the paper trim problem. Now we focus on it alone and try

o better understand its periodicity.

We will also make a transition in notation as we leave the pa-

er trim problem behind.

When working on the paper trim problem the size of the roll

hat was to be cut up was determined by the width of the paper

achine. It was natural to use W for that width and w j width of

he rolls cut out of W. However when talking about the knapsack

roblem alone, without the paper mill setting it has been, oddly

nough, more usual to talk about the length L of the knapsack and

ower case letters l i for the lengths of the individual pieces, and

lso values v i rather than prices p i for the values of the individ-

al lengths. This is what we did, for example, in our paper on the

heory and computation of knapsack functions. We will make that

otation transition here.

Using length terminology for our knapsack problem we assume

e have available n kinds of pieces, the i th kind has length l i and

alue v i . We want to find the integer quantities x i of each piece

hat fit in the available length L and have the largest total value V .

We could write the condition of fitting in as an inequality, as

e did with the equations in Section 2.2 , but here we will write

he knapsack problem in equation form. Our pieces will always in-

lude one piece of length 1 unit 4 with value 0. Multiples of this

iece substitute for an inequality and represents wasted length,

nd all our other lengths are integer multiples of its length.

So we will move forward with knapsack problems in equation

orm:

aximize V =

i = n ∑

i=1

v i x i with

i = n ∑

i=1

l i x i = L (2)

All x i integer.

. The relaxed knapsack problem

.1. Relaxing the knapsack

We start our investigation into periodicity with the linear pro-

ramming solution to (2), then gradually turn that into an inte-

er solution to the knapsack problem. We will see what this ap-

roach can tell us about the periodicity of large knapsack problems

nd we will illustrate what is happening with a small numerical

xample.

Starting with the linear programming solution to (2) means that

e will fill the entire length L of the knapsack using only the dens-

st piece. We will let x 1 represent the (usually non-integer) quan-

ity of that densest piece, so the basic solution is:

 1 =

L

l 1
−

i = n ∑

i=2

l i
l 1

x i . (3A)

In (3A) the basic variable x 1, which tells us how many rolls of

he densest piece are used, has value L / l 1 . The non-basic variables

 i are zero. At this basis, the objective function V of (2) looks like

his:

aximize V = v 1
L

l 1
+

i = n ∑

i =2

v −
i

x i with all v −
i

= l i

(v i
l i

− v 1
l 1

)
.

(3B)
4 The unit is whatever fineness the pieces are being measured to. It could be an

nch, a tenth of an inch, or one millimeter

L

a

m

At our current basic feasible solution the objective function V

as value v 1 L / l 1. and the coefficients v −i in the objective function

ow are now all negative. That is as it should be since using any of

he non-basic variables takes up space in the knapsack that could

e used better by the densest piece x 1 .

To find an integer solution to (3A) requires increasing some of

he non-basic variables x i from their present zero values to new

ositive integer values that make the basic variable x 1 a non-

egative integer. We want to find the change in the non-basic vari-

bles that produces that x 1 with the least possible increase in cost.

hose values of the non-basic variables, together with the x 1 they

roduce, solve the integer knapsack problem.

Our approach, which will turn out to be the beginning of Cor-

er Polyhedra, will be this: we will focus on finding the least cost

hange in the non-basic variables that makes x 1 an integer. We will

ot require x 1 to be non-negative.

Once we know those non-basic variable values, it will turn out

o be straightforward to see for what values of L , the knapsack

ength, the x 1 is non-negative. .

.2. Looking for integer x , the Relaxed Knapsack Equation

Since the condition of being an integer is that x 1 ≡ 0 , (Mod 1),

e apply that condition to (3A). (3A) then becomes what we will

all the Relaxed Knapsack Equation.

i = n

i=2

l i
l 1

x i ≡
L

l 1
Mod (1) , (4)

r equivalently

i = n

i=2

l i x i ≡ L Mod (l 1) (4A)

We also make a small change in our objective function (3B),

mitting the constant term v 1 L / l 1 . This gives us an objective func-

ion that measures directly the cost of departing from the linear

rogramming solution. So we take as the objective function for the

elaxed Knapsack Equation

inimize V

− =

i = n ∑

i=2

−v −
i

x i . (4B)

— and all the individual terms on the right are now non-negative.

.2. The group minimization problem

If we look closely at our new minimization problem, the objec-

ive function V

− from (4B) with the Relaxed Knapsack constraint

4A), we will realize that we are really minimizing V

−−over a

roup. What exactly does that mean?

Consider the group of the integers (Mod l 1). We can map the

nteger lengths l i and L that appear in (4A) into the group ele-

ents l ∗i and L ∗ they correspond to in that group. This mapping

s addition preserving, so (4A) becomes

i = n

i=2

l ∗i x i = L ∗ (4C)

Conversely if we have group elements l ∗i and L ∗ that satisfy (4C)

hen if we substitute for those group elements any lengths l i and

 that are mapped into them these lengths will satisfy (4A).

To see concretely what all this means let us look at a small ex-

mple in a way that allows us to visualize and solve the group

inimization problem that we now have.

548 R. Gomory / European Journal of Operational Research 253 (2016) 543–556

Fig. 2. The group graph H.

Fig. 3. The minimal cost path to 7 ∗ .

Fig. 4. The cost of being integer.

T

e

7

7

o

4

r

i

k

g

l

w

i

t

5

t

m

l

a

t

i

m

v

d

x

k

o

t

m

b

c

i

c

T

p

5.3. An example and the group graph H

Here is a very small example. We have a knapsack of length 27

and pieces of lengths l i = 10, 14, 8, 6, 5 and 1. The values v i of the

pieces are 15, 20, 10.25, 5.5, 5.5 and 0. The piece of most value per

unit length is the piece of length 10.

In (4A) we replace lengths l i by their corresponding group el-

ements from the group of integers (Mod 10). Using ∗ to indicate

group elements, our pieces of lengths 1, 5, 6, 8, and 14 correspond

to the group elements 1 ∗, 5 ∗, 6 ∗, 8 ∗, and 4 ∗. The knapsack length

27 corresponds to the group element 7 ∗. If the knapsack length L

had been 17 or 37 or 47, rather than 27, L ∗ would still be is 7 ∗.

However if L had been 28, L ∗ would be 8 ∗. All possible knapsack

lengths end up being one of the 10 group elements.

We will call L ∗ the group goal element.

Fig. 2 shows the integers (Mod 10) as nodes of a graph which

we will refer to as the group graph H. The arcs in the group graph

show the effect of adding to the group element 0 ∗ the group ele-

ments (1 ∗, 4 ∗, 5 ∗, 6 ∗, 8 ∗), which correspond to the knapsack pieces

of length (1, 14, 5, 6, 8).

The goal element L ∗ is 7 ∗ and is shown in red.

The connection of the group graph with finding solutions to

(4A) is very direct. Any path p in H leading from 0 ∗ to the goal

element L ∗ produces a solution to (4A). The values of l i and L that

solve 4A are any values that map into the group elements included

in the path p , and the x i that appear in (4A) are the number of

times the i th group element appears in the path.

5.4. Least cost paths in H

If we assign to the i th arc, as its cost, the value −v −−
i „, the min-

imization problem (4B) becomes the problem of finding the least

cost path from 0 ∗ to L ∗ in the graph H based on the costs −v −−
i .

In the path shown in Fig. 3 the first number on each arc is v —i ,

while the second number is the actual length of the piece.

The minimal cost path from 0 ∗ to 7 ∗ is quickly found

5 to be

{4 ∗, 5 ∗, 8 ∗}, the path shown in Fig. 3 . The total cost of the path is

1 + 2 + 1.75 = 4.75 and its total length is 14 + 5 + 8 = 27.

For knapsacks of any length L equivalent to 7, the total path cost

4.75 is the reduction in the value V caused by raising the non-basic

variables attached to the pieces of length 14, 5, and 8 from 0 to 1.
5 Any shortest path method, including dynamic programming, will do. Methods

for solving knapsack problems are discussed extensively in (Gilmore & Gomory,

1966).

fi

T

u

a

his change will produce an integer x 1 for any knapsack with L

quivalent to 7 (Mod 10) so it applies to knapsacks of length L =
, 17, 27, 37, 47, 57… and so on indefinitely.

We can follow this same procedure if the goal element is not

∗ but instead any other group element. We will find that the cost

f the least cost paths from 0 ∗ to goal elements g = (1 ∗, 2 ∗, 3 ∗,

∗, 5 ∗, 6 ∗, 7 ∗, 8 ∗, 9 ∗) are (1.5, 2.75, 3.75, 1, 2, 3.5, 4.75, 1.75, 3)

espectively, and the total length of each of those least cost paths

s TL(g) = (1, 22, 13, 14, 5, 6, 27, 8, 19) .

In Fig. 4 the vertical axis displays the increases in value as the

napsack length is increased by 10. The horizontal axis shows the

roup goal element. The blue line shows the increase in the L.P. so-

ution value. The red line shows the increase in the value obtained

ith the best integer solution.

This periodic pattern repeats indefinitely.

Now the question is: when are the integers x 1 that are be-

ng produced by this periodic pattern non-negative integers? When

hey are non-negative they solve the original knapsack problem.

.6. Critical length for non-negativity

Fortunately it is now straightforward to find out what values of

he knapsack length L make x 1 non-negative.

We will ask and answer that question for our example, then the

ethod will be plain. We have goal element 7 ∗ and therefore our

east cost path is, as shown in Section 5.4 , is (4 ∗, 5 ∗, 8 ∗). These

re the non-basics that were 0 in the LP solution but are now 1 in

he least cost path. To determine x 1 we substitute that path value

nto the sum in (3A). Putting the lengths (14, 5, 8) in the sum and

ultiplying through by l 1 leaves us with 10 x 1 = L-28.

Now the situation is clear, for goal element 7 ∗ we will have x 1

alues that are negative if L < 28, for example 7 or 17 or 27. This

oes not provide a solution to the knapsack problem. If L is 28,

 1 will be 0, a valid solution, there will be no rolls of 10 in the

napsack solution for this special value. For L = 37, there will be

ne densest roll, for L = 47 there will be two of them, and then

he solution to the knapsack problem continues indefinably adding

ore and more of the densest roll to the fixed values of the non-

asic variables that appear in the least cost path.

More generally, given a goal element and its attendant least

ost path we substitute its x i values and their lengths in the sum

n (3A) which is simply the total path length TL(g ∗) of the least

ost path.

We then obtain l 1 x 1 = L −TL(g ∗). So the critical value is L =
(g ∗). For L ≥ T(g ∗) x 1 will be non-negative and solves the knapsack

roblem for goal element g ∗.

To find solutions for the whole knapsack problem we simply

nd the group element g ∗ with largest TL(g ∗) value TLmax. For L ≥
Lmax our least cost paths solve the Knapsack problem; we simply

se the least cost paths with increasing numbers of densest rolls

dded.

R. Gomory / European Journal of Operational Research 253 (2016) 543–556 549

7

1

s

p

p

5

l

d

m

fi

v

s

t

i

l

p

p

t

s

p

f

6

6

I

P

l

s

e

m

A

m

d

a

I

b

o

i

B

t

t

B

a

t

f

o

N

t

m

a

u

i

d

b
∑

o
∑

e

b

(

t

(

a

6

a

w

v

z

m

t

i

g

o
This provides periodicity with period l 1.

For problems with goal group elements (0 ∗,1 ∗, 2 ∗, 3 ∗, 4 ∗, 5 ∗, 6 ∗,

∗, 8 ∗, 9 ∗), the least cost path lengths turn out to be (0, 1, 22, 13,

4, 5, 6, 27, 8, 19).

Therefore for knapsack lengths of 27 or longer, all the group

hortest paths can be used for the knapsack solution with the ap-

ropriate number of 10’s added. For all L we will have complete

eriodicity of order 10 in the knapsack.

.4. Summary

We can follow this procedure for any integer knapsack prob-

em. We first select the piece of length l i having greatest value

ensity. We form the group graph of all the corresponding ele-

ents l i
∗ where the ∗ indicates (Mod l 1). In the group graph we

nd the shortest path from 0 ∗ to each group element using the

alues −v i
∗. Each of these shortest paths will then represent the

pecial solution for knapsack lengths that are equivalent (Mod l 1)

o that group element.

Each of those shortest paths will have an actual length us-

ng the lengths of the original pieces. If the longest of these path

engths is L max , then for any L ≥T Lmax these paths, with densest

ieces l 1 added, solve the original knapsack problem and produce

eriodicity.

Introducing the group relaxation has explained the source of

he periodicity we first observed in the actual data and given us

olutions for large knapsack problems or for integer programming

roblems of one dimension. We will next explore Corner Polyhedra

or integer programming problems of more than one dimension

. General integer programming and the group relaxation

6

.1. The group equations and corner polyhedra

Now we apply the same relaxation to general integer programs.

t is the solutions to the relaxed problem that produce Corner

olyhedra.

We will see that the relaxed problem is very structured and

ends itself to theoretical analysis surprisingly well. We will also

ee cutting planes for the original problem emerge from knowl-

dge gained about the relaxed problem.

The general integer programming problem can be stated as

aximizing c · x over the polyhedron in n-space

x = B x B + N x N = b, x ≥ 0 and x integer (5)

Here A is an (m + n) x m matrix which divides into an m x m

atrix B and an m x n matrix N while the m + n integer vector x

ivides into an m vector x B and an n vector x N .

We choose B as our basis and solve for the resulting basic vari-

bles x B .

 x B + B

−1 N x N = B

−1 b (5A)

Just as in the knapsack case we relax this to a group equation

y dropping the non-negativity requirement on x B and requiring

nly that x B be an integer vector. Any x B from (5A) will be integer

f x N satisfies what are now group equations: 7

−1 N x N ≡ B

−1 b (Mod 1) (6A)
6 The basic reference for all of this is (Gomory, 1969). The language there is an-

iquated, the special solution there is called asymptotic integer programming, but

he content is the same.
7 A vector v 1 in n-space is equivalent to another vector v 2 , written v 1 ≡ v 2 (Mod

), and represents the same group element (Mod B) if v 2 can be reached from v 1 by

dding to v 1 an integer sum of the columns of B. Given the matrix B the group of

he integers can be easily found by a standard matrix calculation. One is available,

or example in MatLab under the heading smithnormalDform.
r equivalently

 x N ≡ b (Mod B) (6B)

Just as in our knapsack example, we are now dealing only with

he non-basic variables, they must be chosen in (6A) or (6B) to

ake the x B integer.

We can rewrite (6A) and (6B) to make the individual columns

nd variables more visible. We write c N j for the columns of N, and

se c T j for the columns of the transformed N matrix B

−1 N. The

ndividual non-basic variables that accompany those columns we

enote by x N j . Using this notation the equivalent Eqs. 6(A) and (6B)

ecome the equivalent equations

j

x N j c
T
j ≡ b T (Mod 1) (6C)

r equivalently

j

x N j c
N
j ≡ b (Mod B) (6D)

Where b T = B

−1 b.

These are group equations, because in (6C) it makes no differ-

nce if we replace the columns c T j or the right hand side element

T with a different column that is equivalent to it (Mod 1), or in

 6D) if we replace any of the c N j or b with columns equivalent to

hem (Mod B).

We will discuss the properties of our new group Eqs. (6C) and

 6D) as we go along. But for the moment we will leave Algebra

nd introduce Geometry.

.2. Geometry of corner polyhedra; cutting planes

Fig. 5 shows here the polyhedron of a standard linear program.

Each thin black line in Fig. 5 indicates an inequality. The dots

re the integer values of the variables. At the vertex V, associated

ith the basis B, we have a basic feasible solution. At V the basic

ariables x B are non-negative and the non-basic variables x N are

ero.

The dark gray area in the Fig. 5 displays the integer program-

ing (IP) polyhedron. It is the convex hull of the feasible solutions

hat are integer; so in Fig. 5 it is the convex hull of the dots lying

nside the linear programming polyhedron.

When we substitute for the Integer Programming Eq. (5A) the

roup Eqs. (6A) or (6B) we are getting integer solutions at the price

f giving up the non-negativity of the basic variables. Since we are
Fig. 5. LP, IP, and corner polyhedra.

550 R. Gomory / European Journal of Operational Research 253 (2016) 543–556

t

g

s

i

e

f

t

G

s

u

A

a

f

s

S

s

p

7

7

d

a

∑

o

c

t

f

c

s

g

w

f

o

b

now disregarding these inequalities, we have additional integer so-

lutions that lie outside the linear programming polyhedron. The

convex hull of all the integer solutions to the relaxed problem (6A)

or (6B) is the Corner Polyhedron.

In Fig. 5 the dots in the integer programming polyhedron have

been joined by additional dots that lie in the light gray area. The

dark and light areas together make up the Corner Polyhedron.

Fig. 5 makes one important point very clear: since the inte-

ger programming region lies inside the Corner Polyhedron, cutting

planes for Corner Polyhedra, such as the red line in Fig. 5 , are al-

ways cutting planes for the integer problem . Therefore in our exami-

nation of Corner Polyhedra we will keep cutting planes very much

in mind.

Fig. 5 also suggests that in some cases the Corner Polyhedron

might be very similar to the Integer Polyhedron in the region near

the linear programming vertex.

6.3. N-space

Learning about the geometry of Corner Polyhedra is facilitated

by introducing N-Space. Imagine that you are standing on the lin-

ear programming vertex V of Fig. 5 looking in at the corner poly-

hedron. What you would see is something like this:

The vertex V, where all components of x N are zero, is now the

origin; everything is located by specifying the values x N . We will

refer to this coordinate system as N-Space. In Fig. 6 the small black

dots are points where x N is an integer vector. However, unlike

Fig. 5 , where all the dots represented integer x N and x B , the dots in

Fig. 6 indicate integer x N but it is only the circled dots that satisfy

the group equation and produce integer x B .

We also show cutting planes In Fig. 6 . Cutting planes for corner

polyhedral are inequalities (π , π0) in N space that have the origin

on one side and all the circled dots, all the solutions to the group

equation, on the other.

Cutting planes for Corner Polyhedra come in all degrees of

strength, but actual facets of the Corner Polyhedron would cer-

tainly make the strongest cutting planes. So it would help, if we

could, to learn something about the facets of Corner Polyhedra.

Surprisingly, a great deal can be learned, much more than I

expected when I started down this path. But to get to these re-

sults we need put our focus squarely on the groups and the group

Eqs. (6A) and (6B) rather than on the particular integer program

that gave rise to them.

6.4. Separating corner polyhedra from their I.P. problems

So far our Corner Polyhedra have been tightly tied to the B, N,

and b of the integer programming problem. It is natural therefore
Fig. 6. N-space. The corner polyhedron viewed from the LP vertex V.

T

w

r

a

P

i

W

T

1

w

i

t

B

t

o adopt the notation P{B, N, b) for the Corner Polyhedron whose

roup G is the integers (Mod B), whose list of group elements con-

ists of the columns c N
j

of N (Mod B), and whose goal element g 0

s b (Mod B).

However the same group G, group elements {g}, and goal el-

ment g 0 can be produced by many different B, N, and b. 8 So,

or the moment, we are going to step away from B, N and b and

he integer programming origins of corner polyhedra and take the

, {g}, g 0 and the corner polyhedron they generate, as objects of

tudy in themselves.

When we know more about these polyhedra we will return and

se that knowledge on the original Integer programming problem.

t that point we will have very direct and simple process that en-

bles us to generate whole new families of cutting planes directly

rom the usual linear programming data and without any discus-

ion of groups and Corner Polyhedra. That will be the content of

ection 9.4 .

In this next section we start down the path that leads to a con-

iderable understanding of Corner Polyhedra and eventually to the

rocess of Section 9.4

. Corner polyhedra of groups

.1. Defining the group polyhedra: N space, T-space, and the group

iagram

P(B, N, b) is the convex hull in N space of the non-basic vari-

bles x N that satisfy

j

x N j c
N
j ≡ b (Mod B) . (6D)

Let us take as our group G, the integers (Mod B), and take for

ur group elements g the elements of G that correspond to the

olumns c N j , and take the group element that corresponds to b as

he goal element g 0 . We define the Corner Polyhedron P(G, {g}, g 0)

or the group G, the elements list {g} and goal element g 0 as the

onvex hull in T-space of the non-negative integer points t(g) that

atisfy the Group Equation that corresponds directly to (6D).

∑

∈ { g }
t (g) g = g 0 (7)

Instead of the columns of N adding up to b Mod (B), as in (6D),

e have in (7) the corresponding group elements forming a path

rom 0 ∗ to g 0 in G. In T-space the group elements g play the role

f the columns of N in (6D), and the t (g) play the role of the non-

asic variables x N .

T space and N space are almost exactly the same. However in

-Space we deal with the underlying group G and its elements not

ith the matrix B and its columns which is one of many that give

ise to the same G and {g}.

The integer points in T-Space that satisfy (7) are the ones we

re interested in. The convex hull of these points form the Corner

olyhedron in T space and each one of the points represents a path

n the group from the zero element of G to the goal element g 0 .

e will refer to the collection of these points in T-Space as the set

∗.

We start by defining cutting planes for Group Corner Polyhedra.
8 We would describe our Knapsack example with L = 17 as P((10), {1, 5, 6, 8, 14},

7). The group description P(G, {g}, g 0) would be P((10), {1 ∗ , 4 ∗ , 5 ∗ , 6 ∗ , 8 ∗}, 7 ∗)

hich could also be produced by P((10), {1, 5, 6, 8, 14, 16, 18}, 27). More generally

n n-space (Mod B) two column vectors are equivalent if one can be reached from

he other by adding columns of B. So adding an integer multiple of one column of

 to another column of B produces a B’ that is different, but n-space (Mod B’) is

he same group as n-space (Mod B).

R. Gomory / European Journal of Operational Research 253 (2016) 543–556 551

7

e

p

i

g

f

l

s

h

a

a

c

G

P

t

r

f

i

p

a

s

h

a

s

u

7

t

o

(

b

n

t

s

l

(

s

i

c

s

r

s

t

c

p

o

i

s

h

8

8

m

b

l

h

t

g

e

π
π
π
π

a

u

w

M

o

s

t

c

o

o

f

8

s

i

s

a

p

a

s

d

o

s

t

(

t

b

r

h

d
.2. Cutting planes

A cutting plane for a Group Corner Polyhedron is simply an in-

quality (π , π0) that has all the elements of T ∗ on one side. More

recisely, (π , π0), with non-negative 9 π and π0 , is a cutting plane

f and only if:
∑

∈ { g }
π(g) t (g) ≥ π0 ≥ 0 (8)

or all t(g) satisfying (7). A cutting plane (π , π0) assigns a path

ength π ·t ≥ π0 to any path from 0 ∗ to the goal element g 0 .

Since (8) is just a very long list of inequalities, it has basic fea-

ible solutions.

If we could get basic feasible solutions to (8) what would we

ave? Since basic feasible solutions to a list of inequalities produce

s much equality as is possible, a basic feasible solution would be

 cutting plane that is pressed up against the set T ∗ with as much

ontact as possible. Such a cutting plane would be a facet of the

roup Corner Polyhedron.

More formally:

Facet Theorem

10 . The inequality (π , π0) provides a facet of

(G, {g}, g 0) if and only if (π , π0) is a basic feasible solution of

he list of inequalities (8).

When I first saw this I was really surprised, I thought it was a

emarkable situation. I had always thought it was very hard to find

acets of polyhedra that are defined as the convex hull of a set of

nteger points, but here was a large ordinary linear programming

roblem whose basic feasible solutions turn out to be the facets of

n integer polyhedron, the Corner Polyhedron.

In addition, the large linear programming problem had lots of

tructure.

As it turned out there was more structure than even I could

ave hoped. We are going to be able to learn a surprising amount

bout the structure of those basic feasible solutions, and there are

ome fundamental facts about group cutting planes that will help

s to get there.

.3. Subadditivity of cutting planes

A cutting plane π (g) is said to have the property of subaddi-

ivity if, whenever π (g) is defined on group elements g 1 , g 2 and

n their sum element g 1 + g 2 , we always have π (g 1) + π (g 2) ≥ π
g 1 + g 2). At this moment this may seem like an arbitrary property,

ut we will see in Section 8.2 that it has enormous consequences.

Fortunately, for a cutting plane, being subadditive is the most

atural thing in the world. Suppose we have a cutting plane π (g)

hat is not subadditive, so it has π (g 1) + π (g 2) < π (g 1 + g 2) for

ome particular g 1 and g 2 .

We can change π to a strictly stronger inequality π ’ by simply

owering the value of π ’(g 1 + g 2) so that π ’(g 1 + g 2) = π (g 1) + π
g 2), but otherwise letting π ’(g) = π (g). We claim this new

tronger inequality is still a cutting plane.

Proof: If the new inequality π ’(g) fails to be a cutting plane it

s because there is some path in T ∗ from 0 ∗ to g 0 involving the

hanged element (g 1 + g 2) but having total path length π · t < π0

o that it fails to satisfy (8). But if in that hypothetical path we

eplace the element g 1 + g 2 by the separate elements g 1 and g 2 ,

ince π (g 1) and π (g 2) have not changed, that path would have

he same length as it did before the change from π to π ’. So it

ould not be < π0 . So π ’(g) is in fact a new and stronger cutting

lane.
9 The non-negativity does not have to be assumed, it is actually a consequence

f the structure of the Group Polyhedra. See supplementary material Appendix A.
10 This is Theorem 7 of (Gomory, 1969) but first appeared in (Gomory, 1967).

a

i

Since any non-subadditive cutting plane can be strengthened

nto a cutting plane that is subadditive, from here on we will as-

ume that all our cutting planes are subadditive.

We are now ready to tackle the facets of the Group Corner Poly-

edra. We will start with the Master Polyhedra.

. Facets and master polyhedra

.1. Master polyhedra: definition and Structure Theorem

If the list of group elements {g} contains all the non-zero ele-

ents of G, we call P(G, {g}, g 0) a Master Polyhedron and denote it

y P(G, g 0). We will see that P(G, g 0) has a structure which sheds

ight on the structure of all its large variety of related group poly-

edra P(G, {g}, g 0).

We can now state the fundamental Structure Theorem of Mas-

er Corner Polyhedra.

Structure Theorem

11 : (π , π0) is a facet of the Polyhedron P(G,

 0), if and only if π is a basic feasible solution to the system of

quations and inequalities:

(g 0) = π0

(g) + π(g 0 − g) = π0 g ∈ G

+ , g � = g 0
(g) + π(g ′) ≥ π + (g + g ′) g, g ′ ∈ G

+

(g) ≥ 0 g ∈ G

+
(9)

I was already surprised when I saw in the Facets Theorem that

 large linear program involving all the elements of T ∗ could give

s facets of the Corner Polyhedron. I was even more surprised

hen I found this Structure Theorem which shows, at least for

aster Polyhedra, that we can replace the long list of inequalities

f the Facet Theorem (Section 7.2) by a very much shorter and very

tructured list of equations and inequalities.

When I first saw this theorem, I thought it was too good to be

rue. Fortunately it really is true. With the benefit of hindsight we

an say this: the inequalities in the theorem reflect the property

f subadditivity, the equations reflect the property of minimality,

r symmetry.

Here is a way of seeing where the Structure Theorem comes

rom.

.2. Origin of the Structure Theorem

Consider a cutting plane (π , π0) we obtain as a basic feasible

olution to the long list of inequalities (8) in Section 7.2 . Accord-

ng to the Facet Theorem 7.2 (π , π0) is a facet, there cannot be a

tronger inequality, so (π , π0) must already be subadditive. Choose

ny row t for which we have equality in (8). The row represents a

ath from 0 ∗ to g 0 . Take any two elements g 1 and g 2 of that path

nd replace them by the sum element (g 1 + g 2). Because we have

ubadditivity, π (g 1) + π (g 2) ≥ π (g 1 + g 2), this change must either

ecrease the total path length π · t or leave it unchanged. Since

ur path already has equality in (8) its length cannot be decreased,

o we must have equality: π (g 1) + π (g 2) = π (g 1 + g 2).

Now replace the row t with two equalities; the changed row

, which now has one less element in it, and the new equality π
g 1) + π (g 2) = π (g 1 + g 2). These two along with the other equali-

ies of the basic feasible solution, still determine the same (π , π0)

ecause the change is reversible, the two new rows added together

eproduce the original path t.

Now we keep repeating this process until all the original rows

ave been reduced to two elements each and a number of subad-

itive equalities have been added. 12 But this is then a collection
11 This is Theorem 18 of (Gomory, 1969). For simplicity the notes given there

bout special cases have been omitted here.
12 There will be considerable duplication between the new rows and already ex-

sting rows as we go through this process.

552 R. Gomory / European Journal of Operational Research 253 (2016) 543–556

t

n

a

e

R

G

9

r

a

fi

t

P

d

8

T

M

g

P

m

g

t

t

t

s

n

{

b

g

t

h

y

t

g

of equalities from the Structure Theorem array (9) and that col-

lection of equalities still determine the same (π , π0). So we have

produced a basic feasible solution of (9) that matches the one we

started from in (8).

In addition, since the whole process is reversible, we can start

with a basic feasible solution to (9) and produce a corresponding

one in (8) that determines the same facet (π , π0).

We can make this surprising result more concrete by looking at

our little example.

8.3. The master polyhedron for the small example

Here are the inequalities that give us the facets of the integer

polyhedron P(G 10 , 7 ∗) corresponding to our small example. In (π ,

π0) we choose π0 = 1

π1 + π6 = 1 π2 + π5 = 1 π3 + π4 = 1 π8 + π9 = 1

π1 + π1 ≥ π2 π2 + π1 ≥ π3 π3 + π1 ≥ π4

π8 + π8 ≥ π6 π9 + π9 ≥ π8

There are four equalities, and then 29 inequalities of which only

five are shown here explicitly. But all 29 are about subadditivity;

they all say that for any pair of group elements if you add their π
values together, the result is at least as large as the π value of the

resulting group element.

So what you have in our small example is a sparse matrix of 0’s

and 1’s where the position of the 1’s reflects the group structure.

It is clear that the matrix will grow rapidly in size but there it

is, it is reality. If it grows it is because that is the way that Corner

Polyhedra, and the integer programming problems they are related

to, actually are.

8.4. Using the Structure Theorem – seeing structured facets,

It was very exciting for me to use this theorem to actually

compute the Master Polyhedra for various groups. I was able to

use a program of Balinsky and Wolfe (Wolfe, 1963) that finds all

the vertices and faces of a system of linear inequalities. Using the

Balinski–Wolfe program I saw for first time the complete structure

of a corner polyhedron, or for that matter of any integer polyhe-

dron. Although I had originated the first general cutting planes for

IP (Gomory, 1958), and solved many IP problems, I had never be-

fore seen all the facets of any but the very tiniest polyhedra that

were convex hulls of integer points.

But now I could see them. The Balinsky–Wolfe program enabled

me to find all the facets and vertices for all groups of 12 or less

elements. They are all listed in the appendix of (Gomory, 1969).
Fig. 7. Facets of P(G 10 , 7
∗).

7

a

{

t

e

v

l

T

p

m

t

a

9

b

Based on that appendix, Fig. 7. lists all of the facets of the Mas-

er Polyhedron P(G 10 , 7 ∗) of our example. 13 In this table we have

ot listed the non-negativity constraints on the variables which

re always facets except for the variable corresponding to the goal

lement.

Now let’s look at these facets. Row 1 certainly looks structured.

ow 12 looks structured too. In fact it looks suspiciously like the

omory Mixed Integer Cut (GMIC) which we will discuss in Section

.1 . If we look at row after row almost all look anything but

andom.

The presence of this structure in the facets is very encouraging

nd we will return to this topic in Section 9.1 . However we should

rst ask if our understanding of Master Polyhedra connects with

he need to analyze non-master polyhedra. Our knapsack example

(G 10 , {1 ∗, 4 ∗, 5 ∗, 6 ∗, 8 ∗}, 7 ∗) was certainly not a master polyhe-

ron, it did not have all the group elements present.

.5. Returning to the non-master polyhedra: The Intersection

heorem

The Intersection Theorem

14 describes the relation between the

aster Polyhedron P(G, g 0) their many possible related P(G, {g},

 0).

Intersection Theorem:

 (G, { g } , g 0) = P (G, g 0) ∩

E ({ g })
E{g} refers to the subspace of T-Space generated by the ele-

ents of {g}.

The theorem asserts that P(G, {g}, g 0) is simply the part of P(G,

 0) that lies in the subspace generated by the elements of {g}.

For vertices it means that the vertices of P(G,{g}, g 0) are ob-

ained by taking the vertices of P(G, g 0) and eliminating in each of

hem any positive terms referring to g that are not in {g}.

For facets it is more complicated. It is true that if we take all

he facets of P(G, g 0), and eliminate the terms not in {g}, the inter-

ection of the resulting inequalities is P(G, {g}, g 0). However this is

ot the same as saying that all these inequalities are facets of P(G,

g}, g 0). Some will be facets and some will be valid inequalities

ut not facets. The list of these inequalities will contain every sin-

le facet of P(G, {g}, g 0), but in addition there will be many others

hat are valid inequalities for P(G, {g}, g 0), but, since we already

ave all the facets of P(G, g 0), are now superfluous.

However I was pleasantly surprised to get this much. Generally

ou can’t intersect the convex hull of a set of integer points with

he convex hull of another set and get the convex hull of the inte-

er points they have in common, but in this case we can.

Fig. 8 shows our small problem. Since we don’t have a 9 ∗ or a

∗, a 3 ∗ or a 2 ∗ in our problem, we just strike out those columns

nd the resulting inequalities define the corner polyhedron P(G 10 ,

1 ∗, 4 ∗, 5 ∗, 6 ∗, 8 ∗}, 7 ∗).

If we want to know if a particular row is a facet, we could check

o see how many of our vertices lie on it. I have done that for goal

lement 7 ∗ and the result is that rows 1, 3, 4, 10 and 11 are facets.

We can also check which of these facets are incident to the

ertex (4 ∗, 5 ∗, 8 ∗) which was the solution to our original prob-

em knapsack problem for L ≥ 28. These are rows 1, 4, and 10.

hese, together with the non-negativity constraints give us a com-

lete picture of the polyhedron in the neighborhood of the maxi-

izing vertex.
13 The appendix does not list the facets of P(G 10 , g 0) for all g 0 , it only provides all

he automorphism classes, i.e. the missing g 0 can be obtained from the ones that

re listed by simply multiplying one of the listed g 0 by an integer. In our case P(G 10 ,

∗) is listed so we get the facets of P(g 0 , 7 ∗) by multiplying all the group elements

y 3 which sends 9 into 7 Mod(10).
14 Gomory (1969 , Theorem 12).

R. Gomory / European Journal of Operational Research 253 (2016) 543–556 553

Fig. 8. Inequalities defining the corner polyhedron P(G 10 , {1 ∗ , 4 ∗ , 5 ∗ , 6 ∗ , 8 ∗}, 7 ∗).

8

q

p

h

w

a

f

t

r

t

v

c

c

a

t

t

d

S

f

h

m

M
π
π
π

i

a

s

8

E

s

o

(

t

1

c

N

b

o

o

c

s

l

l

9

9

t

b
.6. Learning more: shooting theorem and experiments 15

The presence of all this structure is very encouraging; but you

uickly find that you would like to learn more and deal with larger

roblems. However the work of finding all the vertices of a poly-

edron grows rapidly with problem size.

But there are some interesting questions that can be attacked

ithout finding all those vertices and facets. Here is one: are there

 few big important facets and a lot of little ones, or is there a

airly even spread of sizes? If there are big important facets, are

hey the very structured ones?

I always thought it would be wonderful if you could shoot ar-

ows at the corner polyhedron from the origin and find out where

hey hit. If you fired randomly you would hit big faces often and

ery little ones very rarely. But it seems that you would have to

ompute those faces before you could shoot at them, and that

omputation is just what we are trying to avoid.

What is remarkable is that there is a way to do this and I man-

ged not to see it for many years. Here is the Shooting Theorem

hat I first described in a lecture at Georgia Tech in 1998.

Consider a vector v that points into the first quadrant. We can

hink of this as a shooting direction and the direction can be ran-

omly chosen (see Fig. 9). The following theorem, based on the

tructure Theorem constraints (9) in Section 8.1 , tells us which
acet would be hit if we fired in the direction v.

15 The work on shooting was not done until much later but it makes a more co-

erent picture to discuss it here.

Fig. 9. The shooting experiment.

p

7

f

t

t

a

m

g

a

/

p

f

3

1

e

i

i
Shooting Theorem: The facet π that solves the problem of

inimizing πv subject to the constraints:

in πv
(g) + π(g 0 − g) = π0 g ∈ G

+ , g � = g 0
(g) + π(g ′) ≥ π(g + g ′) g , g ′ ∈ G

+

(g 0) = π0 , π(g) ≥ 0 g ∈ G

+
(9a)

s the facet first hit by the direction v.

What is remarkable is that we are finding the facet that v hits,

nd doing that without any list of facets. We just use the con-

traints of the Structure Theorem, and the right facet pops out.

.7. What we found out by shooting

After I had done some very preliminary shooting calculations,

llis Johnson and Lisa Evans took up the challenge of doing full

cale computations, firing 10,0 0 0 shots each at master polyhedra

f sizes up to 20. The results which we described in a joint paper

 Gomory, Johnson, & Evans, 2003) I still find very striking (Fig. 10).

Especially significant is the line in Fig. 10 entitled “Facets Hit

o 50%”. For example in shooting at the Polyhedron P(G 18 , 2), the

0,0 0 0 shots were spread over only 151 facets. But, even more con-

entrated, 50% or 5, 0 0 0 of those hits were on only 8 of the facets.

ot only was there a great concentration of hits on these 8 facets,

ut in looking at these facets there was a remarkable dominance

f very simple facets. Many showed the role of automorphisms and

f subgroups.

Other researchers have since done much larger and more de-

isive experiments that confirm the dominance we see here of a

mall number of large structured facets.

At this point it is natural to try to connect what we have

earned about Group Polyhedra to the integer programming prob-

ems of the real world.

. Large problems

.1. Structured facets

One way to make progress with large problems is to look at

he structured facets that show up in small examples, or are hit

y shooting, and see if the structure can be carried up to large

roblems. Here is one example:

Look at our familiar cyclic group of order 10 with goal element

∗. We are interested in facets (π , π0) and choose π0 = 1. Then,

or all the group elements taken in order, 1 ∗, 2 ∗, 3 ∗,…, choose

he values π = {1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 2/3, 1/3}. Multiplied

hrough by 21 to make these into integers, this is the GMIC and

lso the last row in our list of facets in Fig. 7.

This GMIC facet structure generalizes to any cyclic group G no

atter how large and any goal element g 0 .

Assume that the goal element is the r th element of the cyclic

roup. We choose value 1 for it. For the i th element, if i ≤ r , we

ssign the value π (g i) = i / r , for i > r , we choose π (g i) = (|G| −i)

(|G| −r). 16 This is a facet for any cyclic group and any goal element.

Now consider automorphisms. If the goal element in our exam-

le had been 9 ∗ instead of 7 ∗ we would have had for G(10, 9 ∗) the

acet π = (1/9, 2/9, 3/9, 4/9, 5/9, 7/9, 8/9, 1} or in integers (1, 2,

, 4, 5 6 7, 8, 9}. Multiplying the elements of our cyclic group of

0 by 3 is an automorphism that sends element 9 ∗ onto 7 ∗; sure

nough, the numbers 1–9, properly rearranged, show up as a facet

n the fourth row from the bottom in Fig. 7.

Automorphisms of Master Polyhedra map facets into facets. It

s also true that facets of subgroups lift up and reappear as facets
16 This is the integer part of the Gomory mixed integer cut.

554 R. Gomory / European Journal of Operational Research 253 (2016) 543–556

Fig. 10. Shooting results.

Fig. 11. A cutting plane for RM1.

a

G

i

b

B

T

t

w

a

s

m

c

a

b

c

9

g

t

E

i

t

w

c

c

18 This approach was first described in (Gomory, 1969) section E and then devel-

oped in (Gomory & Johnson, 1972, Gomory & Johnson, 1972, Gomory & Johnson,
for their parent groups. The same GMIC construction used on a

subgroup of order 5 reappears twice in row 3 of Fig. 7 to form

a facet of our group of order 10.

When it comes to exploiting structures, the effect of automor-

phisms and lifting up from subgroups, there is an almost endless

list of possibilities. Sometimes these explorations can be difficult;

sometimes the automorphism of a very symmetric looking facet

can look quite jumbled. This section barely touches on what is

possible.

However dealing with arbitrarily large cyclic groups takes us

naturally to our next step. We move from finite cyclic groups to

the group formed by the real numbers (Mod1).

9.2. The real line (Mod 1)

There is not much difference between the reals modulo 1,

which we will refer to as RM1, and any very large cyclic group.

However in RM1 we do have the freedom to take as group ele-

ments any numbers in the interval [0, 1) and add them Mod 1 to

produce another group element. We don’t need to pick elements

from some fixed grid of points. This will open the door to the

consideration of continuous variables along with integer ones. This

is work that Ellis Johnson and I did together in the early 1970’s

(Gomory & Johnson, 1972; Gomory & Johnson, 1972; Gomory &

Johnson, 1973).

Working in RM1 we can define a path to a goal element as in

Eq. (7) , and we can define cutting planes as in Eq. (8) . However

in our work with RM1, which contains infinity of group members,

we will confine the sums in these equations to adding up a finite

number of group elements. 17 Any one path, for example, is allowed

to contain only a finite number of group elements.

We will still want to distinguish facets from lesser cutting

planes. A good definition for a facet, that includes what we have

done so far with basic feasible solutions, is this: a cutting plane

(π , π0) is a facet if there exists no other cutting plane (π ’, π0)

such that π ’(g) ≤ π (g) for all g, and also for at least one g we

have strict inequality, π ’(g) < π (g).

Fig. 11 shows an example of a cutting plane for RM1. This is the

direct extension to RM1 of the GMIC discussed in Section 9.1 . We

have simply done straight line interpolation between the elements

of the cyclic group.

We are fortunate that the most obvious methods for extending

our finite group facets to RM1 actually work. In addition to straight

line interpolation, Ellis Johnson and I included in our work a dis-

cussion of a different method of interpolation involving connect-

ing points using two slopes rather than straight lines. That concept

that will seem more natural after reading Section 9.6 ;

9.3. Moving to large problems: not knowing G

We are now ready to move on to problems of any size. For re-

ally large problems it would be great to have the ability to gener-
17 This is often referred to as finite support.

1

c

te cutting planes without even having to find out what the group

 determined by the basis B actually is.

Although this sounds like a lot to ask, we might suspect that

t is possible; the original Gomory Fractional Cuts were generated

y taking the fractional parts of the entries in rows of the matrix

−1 N that appears in Eq. (6A) and using them as cutting planes.

here was no need to know what group was being produced by

he matrix B. Can we do something like that here?

Fortunately, with what we know now, we are able to produce

hole new families of inequalities for Corner Polyhedra without

nalyzing B. Our basic approach

18 , described in detail in the next

ection, is based on the fractional rows used in the original Go-

ory Fractional Cuts but here we use the fractional rows not as

uts but as mappings from the columns of the Corner Polyhedron,

s displayed in Eq. (6C) , into group elements in RM1. We will then

e able to carry back cutting planes from the group RM1 to form

utting planes for the Corner Polyhedron.

.4. How cutting planes for corner polyhedra are produced from

roup cutting planes

Eq. (6C) displays the columns of B

−1 N as the c T j alongside

heir accompanying non-basic variables x N j . We take the i th row of

q. (6C) , map it into a path in the real line (Mod 1) by replac-

ng each row element c i, j by the group element g(j) it corresponds

o (Mod 1). For example if c i, j was −7.61, the corresponding g(j)

ould be 0.39 ∗.

We also replace the right hand side i th row element b i by its

orresponding group element g 0 .

For any choice of row this gives us a mapping of the columns

T
j
into the real line (Mod 1). 19 The important point is that this
973, Gomory & Johnson, 2003).
19 Different row choices will give us different mappings and eventually different

utting planes.

R. Gomory / European Journal of Operational Research 253 (2016) 543–556 555

Fig. 12. Using a cutting plane.

m

t

r

∑

∑

i

p

w
∑

o

t

p

9

p

4

r

0

w

o

-

i

i

0

9

o

R

J

s

t

a

o

e

p

v

d

t

f

G

t

d

o

c

m

a

o

S

F

o

20 A proof of this theorem is also given in the supplementary material, Appendix

B (Gomory & Johnson, 2003).
apping is addition preserving. So if the x T
j

are non-negative in-

egers and are a solution to (6C) the group elements in RM1 cor-

esponding to the columns c T
j
will form a path to g 0 .

j

x N j c
T
j ≡ b T (Mod 1) maps into the path

j

x N j g { j } = g 0 in RM1 .

The non-negative integers x T
j

play the role of the t(g) in Eq. (7)

n telling us how many times the group element is used in the

ath.

Now consider any cutting plane (π (g), π0) for the group RM1

ith goal element g 0 . Applying it to the path gives:

j

π(g (j)) x T
j ≥ π0 .

This is a cutting plane for the Corner Polyhedron.

So this a process that allows us to take our entire assortment

f cutting planes for RM1 and turn them all into cutting planes for

he Corner Polyhedron and therefore for the Integer programming

roblem from which they have arisen.

.5. An arithmetic example of the process

Take the data from the i th row of a large Corner Polyhedron

roblem in the form of Eq. (6C) :

 . 72 x N 1 − 2 . 93 x N 2 + 0 . 51 x N 3 + 0 . 15 x N 4 · · · ≡ 2 . 79

We take the fractional parts of the row elements and of the

ight hand side:

 . 72 0 . 07 0 . 51 0 . 15 ... 0 . 79

Fig. 12 shows here a cutting plane (π (g), 1) for the Group RM1

ith goal element 0.79.
Fig. 13. Facets based on the Go
In Fig. 12 we use the GMIC but it could just as well be any

ther group cutting plane for RM1 with goal element 0.79.

We enter our fractional values (they represent group elements)

 on the x axis and read out their π values on the vertical axis.

We obtain 0.93, 0.09, 0.75, 0.21 …….. 1.00. The cutting plane

nequality for the Corner Polyhedron produced using these values

s:

 . 93 x N 1 + 0 . 09 x N 2 + 0 . 75 x N 3 + 0 . 21 x N 4 ≥ 1 . 00

It is a valid cutting plane.

.6. Other facets of the reals (Mod 1)

If we have other facets of RM1, we can use any of them in place

f the GMIC in the cutting plane process of Section 9.5 . Facets of

M1 are in fact very plentiful.

One very large collection of facets emerges from the Gomory–

ohnson Theorem. 20

Gomory–Johnson Theorem: If π (x) has only two slopes and

atisfies the condition π (x) + π (1 −x) = 1 then it is a facet of RM1.

The x in the theorem refers to any group element located on

he real interval [0, 1). The condition π (x) + π (1 −x) = 1, which first

ppeared in the Structure Theorem, is also known as the symmetry

r minimality condition.

In Fig. 13 , we show some of the profusion of facets which

merge from this theorem. As in Fig. 11 , the horizontal axis dis-

lays the group element in RM1 and the vertical axis displays the

alue of π(x) .

In these pictures lines of similar structure or color represent

ifferent facets (π (x), 1) .

In addition, if one of the facets in Fig. 12 was gradually moved

o approach a neighboring one, all those new lines would also be

acets.

In Fig. 13 the GMIC appears as the dotted line. But here the

MIC is not alone but part of a continuous family of related cut-

ing planes. The GMIC, which originated in an ad hoc manner to

eal with programming problems with both integer and continu-

us variables, and has a long track record as an effective practical

utting plane, now emerges as part of our theoretical structure.

In addition to the facets covered by the theorem there are many

ore. There are, for example, facets with three slopes, and there

re ways of combining apparently different facets to make new

nes (Gomory & Johnson, 2003).

Any of these facets can then be used by the process of

ection 9.4 to generate cutting planes. The facet would appear in

ig. 12 in place of the GMIC.

So we are in a different world. We have a continuous profusion

f facets and therefore the challenge of finding some way to select
mory–Johnson theorem.

556 R. Gomory / European Journal of Operational Research 253 (2016) 543–556

t

t

m

t

i

b

S

f

R

C

G

G

G

G

G

G

G

G

W

among them. It would help to have an index that measures their

power. This index, along with other closely related topics, is also

addressed in (Gomory & Johnson, 2003).

10. Continuous variables and more dimensions

In this paper I have emphasized the early period and the mo-

tivation and problems that drove the creation and early evolution

of Corner Polyhedra. As a result this article is already long, and

two important directions, continuous variables and more dimen-

sions, cannot be described here beyond a few remarks. However

both areas will be discussed in Appendices that are available as

supplementary material.

One result that is covered in that material is that the process

of Section 9.4 for generating cutting planes extends simply and di-

rectly to take in continuous variables. 21

However continuous variables can do more than merely repeat

the results we have for pure integer problems, continuous variable

problems have a life of their own. It is possible to start with con-

tinuous non-basic variables and develop cutting planes that then

apply to the integer case as well. This process also sheds light on

the special role of the GMIC. 22

This direction turns out to be very helpful in developing cutting

planes that are based not on a single row of an integer program-

ming problem but on two or more rows. The best description of

that area is in the many published papers of Gerard Cornuejols and

Francois Margot. 23 My similar results in that area evolved directly

from the approach and contents of this paper. 24

11. Conclusion

Corner Polyhedra are a natural concept and we have been able

to learn a surprising amount about them. What we already know

suggests many directions for further exploration. We have seen

that there are big facets and lots of tiny ones; how can we ex-

ploit this fundamental advantage? And the methods we use are

limited, the simplex method is solving one set of linear equations

after another, but we make no use at all of the classical methods

for solving linear equations in integers. Also the Corner Polyhedra

themselves provide a wonderful sequence of problems of increas-

ing size whose structure is full of clues. Perhaps we should be solv-

ing maximization problems on Corner Polyhedra to see what it is

about the structure that makes for computational difficulties and

what makes things easy.
21 Gomory(1970) is the source of these results. Appendix C of the supplementary

material will be easier to read.
22 Supplementary material, Appendix D.
23 See for example (Cornuejols & Margot, 2009).
24 Supplementary material Appendices D,E, and F
It has been a wonderful journey for me, from the paper mills,

hrough periodicity, through the surprise of finding so much struc-

ure in the Structure Theorem and much more. When I think of the

any possibilities for progress that we know about, not to mention

hose that have not yet revealed themselves, I feel confident that

nteger programming, as we know it today, is only at its earliest

eginning.

upplementary materials

Supplementary material associated with this article can be

ound, in the online version, at doi:10.1016/j.ejor.2016.03.001 .

eferences

ornuejols, G. , & Margot, F. (2009). On the Facets of mixed integer programs with
two integer variables and two constraints. Mathematical Programming, A, 120 ,

429–456 .
ilmore, P. C. , & Gomory, R. E. (1961). A linear programming approach to the cutting

stock problem. Operations Research, 9 (6)), 849–859 November-December .
ilmore, P. C. , & Gomory, R. E. (1963). A linear programming approach to the cutting

stock problem - part II. Operations Research, 11 (6), 863–888 November-Decem-

ber .
ilmore, P. C. , & Gomory, R. E. (1965). Multi-stage cutting stock problems of two

and more dimensions. Operations Research, 13 (1), 94–120 January-February .
ilmore, P. C. , & Gomory, R. E. (1966). The theory and computation of knapsack

functions. Operations Research, 14 (6), 1045–1074 November-December .
Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear pro-

grams. Bulletin of the American Mathematical Society, 64 (5), 275–278 .

Gomory, R. E. (1967). Faces of an integer polyhedron: 57 (pp. 16–18). Januaryalso pub-
lished in Lectures in Applied Mathematics 2, Part I, Mathematics of the Decision

Sciences, ed. by G.B. Dantzig and A.F.Veinott, Jr., American Mathematical Soci-
ety, 1968, pp. 283-287 .

omory, R. E. (1969). Some polyhedra related to combinatorial problems. Journal of
Linear Algebra and Its Applications, 2 (4), 451–558 October .

omory, R. E. , & Abadie, J. (1970). Properties of a class of integer polyhedra. Integer

and non-linear programming (pp. 353–365). North-Holland .
Gomory, R. E. , & Johnson, E. L. (1972). Some continuous functions related to cor-

ner polyhedra - Part II. Mathematical Programming, 3 (3), 359–389 North-Hol-
land, December .

omory, R. E. , & Johnson, E. L. (1972). Some continuous functions related to corner
polyhedra. Mathematical Programming, 3 (1), 23–85 North-Holland, August .

Gomory, R. E. , & Johnson, E. L. (1973). The Group problems and subadditive func-
tions. Mathematical programming (pp. 157–184). Academic Press .

omory, R. E. , & Johnson, E. L. (2003). T-space and cutting planes. Mathematical

Programming, Ser. B 96 (pp. 341–375). Springer-Verlag .
Gomory, R. E. , Johnson, E. L. , & Evans, Lisa (2003). Corner polyhedra and

their connections with cutting planes. Mathematical Programming, Ser. B 96
(pp. 321–339). Springer-Verlag .

olfe, P., 0704 FORTRAN Mathematical Programming System, IBM Systems Refer-
ence Library, 1963, File No. 0704-0863RSM001. This is used with Michel Balin-

ski, “Mathematical Programming System I”, ALL. IBM Systems Reference Library,

1963, File No. 0704-1092RSMIAS.

http://dx.doi.org/10.1016/j.ejor.2016.03.001
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30111-4/sbref0016

	Origin and early evolution of corner polyhedra
	1 Introduction and background
	1.1 Intent of this article
	1.2 Background: applied mathematics and operations research
	1.3 Some modern explorers

	2 Origins of column generation
	2.1 The stock cutting problem
	2.2 The paper trim problem - linear programming
	2.3 Size still a problem
	2.4 A starting solution
	2.5 Improving the starting solution
	2.6 The knapsack problem
	2.7 An algorithm

	3 Practical progress
	3.1 From algorithms to paper mills
	3.2 Computing and early results
	3.3 Reducing running time and other progress

	4 Encountering the unexpected: periodicity appears
	4.1 Data and periodicity
	4.2 Examining the knapsack: leaving paper trim behind

	5 The relaxed knapsack problem
	5.1 Relaxing the knapsack
	5.2 Looking for integer x, the Relaxed Knapsack Equation
	5.2 The group minimization problem
	5.3 An example and the group graph H
	5.4 Least cost paths in H
	5.6 Critical length for non-negativity
	5.4 Summary

	6 General integer programming and the group relaxation66The basic reference for all of this is (Gomory, 1969). The language there is antiquated, the special solution there is called asymptotic integer programming, but the content is the same.
	6.1 The group equations and corner polyhedra
	6.2 Geometry of corner polyhedra; cutting planes
	6.3 N-space
	6.4 Separating corner polyhedra from their I.P. problems

	7 Corner polyhedra of groups
	7.1 Defining the group polyhedra: N space, T-space, and the group diagram
	7.2 Cutting planes
	7.3 Subadditivity of cutting planes

	8 Facets and master polyhedra
	8.1 Master polyhedra: definition and Structure Theorem
	8.2 Origin of the Structure Theorem
	8.3 The master polyhedron for the small example
	8.4 Using the Structure Theorem - seeing structured facets,
	8.5 Returning to the non-master polyhedra: The Intersection Theorem
	8.6 Learning more: shooting theorem and experiments1515The work on shooting was not done until much later but it makes a more coherent picture to discuss it here.
	8.7 What we found out by shooting

	9 Large problems
	9.1 Structured facets
	9.2 The real line (Mod 1)
	9.3 Moving to large problems: not knowing G
	9.4 How cutting planes for corner polyhedra are produced from group cutting planes
	9.5 An arithmetic example of the process
	9.6 Other facets of the reals (Mod 1)

	10 Continuous variables and more dimensions
	11 Conclusion
	 Supplementary materials
	 References

